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1 Free Products and the Seifert-van Kampen Theorem

1.1 Free products and free groups

So far, we have proven the following “almost-classification.”

Theorem 1.1. If S is a closed surface, then

S ∼= S2, S ∼= T 2# · · ·#T 2, or S ∼= RP 2# · · ·#RP 2.

We want to prove that these are all distinct. Let’s give these names.

Definition 1.1. For g ∈ N, let

Sg := T 2# · · ·#T 2︸ ︷︷ ︸
g

, Ng := RP 2# · · ·#RP 2︸ ︷︷ ︸
g

.

We call g the genus of the surface.

We will prove that genus is well-defined by showing that S2, Sg, and Ng are all different.
The idea is to calculate π1(S) and show that these are different for these surfaces. We know
that:

π1(S
2) ∼= 1, π1(T

2) = Z2

π1(RP 2) ∼= Z2, π1(K) = π1(N2) ∼= 〈r, u | rur = u〉 .

First, let’s review some group theory. We can generate a group by a presentation, which
includes generators and relations between them.

Example 1.1. Here is a group with two generators and one relation.〈
a1, a2 | a1a2a−11 a−12 = 1

〉 ∼= Z2.

Definition 1.2. Let G = 〈a1, . . . , an | r1 = 1, . . . , rm = 1〉 and G′ = 〈b1, . . . bn′ | s1 =
1, . . . , sm′ = 1〉 be finitely generated groups. Then the free product of G and G′ is

G ∗G′ = 〈a1, . . . , an, b1, . . . bn′ | r1 = 1, . . . , rm = 1, s1 = 1, . . . , sm′ = 1〉 .
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Definition 1.3. The free group on n generators is the group Fn = 〈a1, . . . , an〉 (no rela-
tions).

The free group on 1 generator is F1
∼= Z. By induction, we see that the free group on

n generators is Fn
∼= Fn−1 ∗ Z ∼= Z ∗ · · · ∗ Z︸ ︷︷ ︸

n

.

1.2 The Seifert-van Kampen theorem

Recall a theorem we proved earlier.

Theorem 1.2. If X = A ∪ B with A and B open, simply connected, and path-connected
and A ∩B path-connected, then π1(X) ∼= 1.

This is a special case of a more general result.

Theorem 1.3 (Seifert-van Kampen1). Let X = A ∪ B with A and B open and path-
connected, p ∈ A ∩B, A ∩B be path-connected, and let

iA : A ∩B → A, iB : A ∩B → B

be the inclusion maps. Then

π1(X, p) ∼=
π1(A, p) ∗ π1(B, p)

N
,

where N is the smallest normal subgroup containing the elements (iA)∗(g)[(iB)∗(g)]−1 for
all g ∈ π1(A ∩B, p).

The reason we want to quotient out by this subgroup is that we want to say that
(iA)∗(g)[(iB)∗(g)]−1 is trivial in π1(X, p). That is, (iA)∗(g) = (iB)∗(g). We have to manu-
ally insert this relation because the free product of G and G′ does not include any relations
relating elements of G to elements of G′.

So if
π1(A, p) = 〈a1, . . . , an | r1 = 1, . . . , rm = 1〉 ,

π1(B, p) = 〈b1, . . . bn′ | s1 = 1, . . . , sm′ = 1〉

π1(C ∩B, p) = 〈g1, . . . g` | t1 = 1, . . . , tk = 1〉 ,

then

π1(X, p) = 〈a1, . . . , an, b1, . . . bn′ |r1 = 1, . . . , rm = 1, s1 = 1, . . . , sm′ = 1,

(iA)∗(g1) = (iB)∗(g1), . . . , (iA)∗(g`) = (iB)∗(g`)〉.
1This was apparently proven independently by both Seifert and van-Kampen. Sometimes, it is just

called the van Kampen theorem.
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1.3 Applications of the Seifert-van Kampen theorem

We will not prove the Seifert-van Kampen theorem, but here are some examples.

Example 1.2. Let X2 be the 1 point union of two circles, and split into A and B as
follows.

Then A ' S1, B ' S1, and A ∩ B ' {p}. Since π1(A ∩ B) ∼= 1, the normal subgroup
N = 1. So π1(X2, p) ∼= π1(A, p) ∗ π1(B, p) ∼= Z ∗ Z ∼= F2 = {a1, a2}. The element ai = [σi],
where σi is a path from p to p that goes once around the i-th circle.
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Let X3 be the 1 point union of three circles, and split into A and B as follows.

We know that A ' S2, B ' S1, and A ∩B ' {p}. As before, π1(A ∩B, p) ∼= 1, so N = 1.
So π1(X3, p) ∼= π1(X2) ∗ π1(S1) ∼= F2 ∗ Z ∼= F3.

Similarly, by induction, if Xn is the 1 point union of n circles, then π1(Xn, p) ∼= Fn =
〈a1, . . . , an〉, and ai = [σi], where σi is a path p to p that goes around the i-th circle once.

Example 1.3. We can form X = S2 from two punctured tori.

This can be a bit confusing, so for surfaces, we will instead use polygons.
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Example 1.4. Let’s decompose the torus into a punctured torus and a disc.

As we did on a homework, A deformation retracts to the edges (by widening the hole),
which is actually the one-point union of two circles. B deformation retracts to a single
point, and A ∩B ' S1. We have that

(iA)∗ : π1(A ∩B)︸ ︷︷ ︸
∼=Z

→ π1(B)︸ ︷︷ ︸
∼=1

sends n 7→ 1,

(iB)∗ : π1(A ∩B)︸ ︷︷ ︸
∼=Z

→ π1(A)︸ ︷︷ ︸
∼=〈a,b〉

sends 1 7→ aba−1b−1,

which goes counterclockwise around the square. So

π1(T
2) ∼=

π1(A) ∗ π1(B)

N
∼= 〈a, b | (iA)∗(1) = (iB)∗(1)〉
=
〈
a, b | aba−1b−1 = 1

〉
= 〈a, b | ab = ba〉
∼= Z2.

This is the third way we have calculated π1(T
2). The first was that we treated T 2 as

S1 × S1, and the second was that we treated T 2 as the orbit space R2/Z2.

5



Example 1.5. Look at S2 = T 2#T 2. The single-cell cellular decomposition for S2 is

Define A and B similarly to how we did for the torus.
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Then A deformation retracts onto the edge, which is X4, the one-point union of 4 circles.
B deformation retracts to a point, and A ∩ B ' S1. So (iB)∗(1) = 1, and (iA)∗(1) =
aba−1b−1cdc−1d−1 (going around the octagon once). So

π1(S2) ∼=
〈a, b, c, d〉 ∗ 1

N
∼= 〈a, b, c, d | (iA)∗(1) = (iB)∗(1)〉
∼=
〈
a, b, c, d | aba−1b−1cdc−1d−1 = 1

〉
,

which is not a group we recognize. In general, we can get

π1(Sg) ∼= 〈a1, . . . , a2g | a1a2a−11 a−12 · · · a2g−1a2ga
−1
2g−1a

−1
2g = 1〉.

Example 1.6. We can do the same thing with Ng.

We get that
π1(Ng) ∼=

〈
a1, . . . , ag | a21a22 · · · a2g = 1

〉
.

How do we know if any of these groups are the same? We will abelianize them.
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